AAC Accepted Manuscript Posted Online 9 March 2020 Antimicrob. Agents Chemother. doi:10.1128/AAC.00399-20 Copyright © 2020 American Society for Microbiology. All Rights Reserved.

1 Compounds with therapeutic potential against novel respiratory 2019 coronavirus

2

3 Miguel Angel Martinez

- 5 IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB),
- 6 Badalona, Spain
- 7
- 8
- 9

4

10 Address correspondence to Miguel Angel Martínez, Fundació irsiCaixa, Hospital Universitari Germans

- 11 Trias i Pujol, 08916 Badalona, Spain. Tel: +34 934656374; Fax: +34 934653968; E-mail address:
- 12 <u>mmartinez@irsicaixa.es</u>
- 13

15	Currently, the expansion of the novel human respiratory coronavirus (known as: SARS-CoV-2,
16	COVID-2019, or 2019-nCoV) has stressed the need for therapeutic alternatives to alleviate and
17	stop this new epidemic. The previous epidemics of high-morbidity human coronaviruses, such
18	as the acute respiratory syndrome coronavirus (SARS-CoV) in 2003, and the Middle East
19	respiratory syndrome corona virus (MERS-CoV) in 2012, prompted the characterization of
20	compounds that could be potentially active against the currently emerging novel coronavirus
21	SARS-CoV-2. The most promising compound is remdesivir (GS-5734), a nucleotide analog
22	prodrug currently in clinical trials for treating Ebola virus infections. Remdesivir inhibited the
23	replication of SARS-CoV and MERS-CoV in tissue cultures, and it displayed efficacy in non-
24	human animal models. In addition, a combination of the human immunodeficiency virus type 1
25	(HIV-1) protease inhibitors, lopinavir/ritonavir, and interferon beta (LPV/RTV-INFb) were shown
26	to be effective in patients infected with SARS-CoV. LPV/RTV-INFb also improved clinical
27	parameters in marmosets and mice infected with MERS-CoV. Remarkably, the therapeutic
28	efficacy of remdesivir appeared to be superior to that of LPV/RTV-INFb against MERS-CoV in a
29	transgenic humanized mice model. The relatively high mortality rates associated with these
30	three novel human coronavirus infections, SARS-CoV, MERS-CoV, and SARS-CoV-2, has
31	suggested that pro-inflammatory responses might play a role in the pathogenesis. It remains
32	unknown whether the generated inflammatory state should be targeted. Therapeutics that
33	target the coronavirus alone might not be able to reverse highly pathogenic infections. This
34	minireview aimed to provide a summary of therapeutic compounds that showed potential in
35	fighting SARS-CoV-2 infections.

36

37	origin emerged in Wuhan (Hubei, China) and were reported to the National Health Commission
38	of China (1). In the early stages of this pneumonia, patients developed severe acute respiratory
39	infection symptoms, and some patients rapidly developed acute respiratory distress syndrome
40	(2). Real time RT-PCR and deep sequencing analysis from lower respiratory tract samples
41	identified a novel human coronavirus, now called SARS-CoV-2 (3–5). By the end of January,
42	2020, nearly 50,000 confirmed cases were reported in China, and the first confirmed cases were
43	reported in Thailand, Nepal, Republic of Korea, USA, Singapore, France, Viet Nam, Canada,
44	Australia, Malaysia, Germany, UAE, Finland, Italy, Cambodia, Sri Lanka, the Russian Federation,
45	Spain, Sweden, India, and the Philippines. Among the patients with confirmed cases, most were
46	aged 30–80 years and had mild infections (80%). The fatality rate was around 2% (6).
47	
-77	
48	Coronaviruses can cause different types of infections in diverse animals. In humans, they mainly
48 49	Coronaviruses can cause different types of infections in diverse animals. In humans, they mainly produce respiratory tract infections, as observed with SARS-CoV and MERS-Cov (7, 8).
48 49 50	Coronaviruses can cause different types of infections in diverse animals. In humans, they mainly produce respiratory tract infections, as observed with SARS-CoV and MERS-Cov (7, 8). Sequencing and phylogenetic analyses have shown that the novel SARSCoV-2 virus is closely
48 49 50 51	Coronaviruses can cause different types of infections in diverse animals. In humans, they mainly produce respiratory tract infections, as observed with SARS-CoV and MERS-Cov (7, 8). Sequencing and phylogenetic analyses have shown that the novel SARSCoV-2 virus is closely related to a group of human SARS-like coronaviruses and bat SARS-related coronaviruses (9–
48 49 50 51 52	Coronaviruses can cause different types of infections in diverse animals. In humans, they mainly produce respiratory tract infections, as observed with SARS-CoV and MERS-Cov (7, 8). Sequencing and phylogenetic analyses have shown that the novel SARSCoV-2 virus is closely related to a group of human SARS-like coronaviruses and bat SARS-related coronaviruses (9– 11). The origin of SARSCoV-2 remains unclear; it is unknown how it was first transmitted to
48 49 50 51 52 53	Coronaviruses can cause different types of infections in diverse animals. In humans, they mainly produce respiratory tract infections, as observed with SARS-CoV and MERS-Cov (7, 8). Sequencing and phylogenetic analyses have shown that the novel SARSCoV-2 virus is closely related to a group of human SARS-like coronaviruses and bat SARS-related coronaviruses (9– 11). The origin of SARSCoV-2 remains unclear; it is unknown how it was first transmitted to humans. The high prevalence of SARS-related coronaviruses in bats has suggested that a bat
48 49 50 51 52 53 54	Coronaviruses can cause different types of infections in diverse animals. In humans, they mainly produce respiratory tract infections, as observed with SARS-CoV and MERS-Cov (7, 8). Sequencing and phylogenetic analyses have shown that the novel SARSCoV-2 virus is closely related to a group of human SARS-like coronaviruses and bat SARS-related coronaviruses (9– 11). The origin of SARSCoV-2 remains unclear; it is unknown how it was first transmitted to humans. The high prevalence of SARS-related coronaviruses in bats has suggested that a bat coronavirus might have jumped into a civet or some other mammal, and from there to humans,
48 49 50 51 52 53 54 55	Coronaviruses can cause different types of infections in diverse animals. In humans, they mainly produce respiratory tract infections, as observed with SARS-CoV and MERS-Cov (7, 8). Sequencing and phylogenetic analyses have shown that the novel SARSCoV-2 virus is closely related to a group of human SARS-like coronaviruses and bat SARS-related coronaviruses (9– 11). The origin of SARSCoV-2 remains unclear; it is unknown how it was first transmitted to humans. The high prevalence of SARS-related coronaviruses in bats has suggested that a bat coronavirus might have jumped into a civet or some other mammal, and from there to humans, which started the former 2003 SARS epidemic. Initial confirmed cases of SARSCoV-2 were
48 49 50 51 52 53 54 55 56	Coronaviruses can cause different types of infections in diverse animals. In humans, they mainly produce respiratory tract infections, as observed with SARS-CoV and MERS-Cov (7, 8). Sequencing and phylogenetic analyses have shown that the novel SARSCoV-2 virus is closely related to a group of human SARS-like coronaviruses and bat SARS-related coronaviruses (9– 11). The origin of SARSCoV-2 remains unclear; it is unknown how it was first transmitted to humans. The high prevalence of SARS-related coronaviruses in bats has suggested that a bat coronavirus might have jumped into a civet or some other mammal, and from there to humans, which started the former 2003 SARS epidemic. Initial confirmed cases of SARSCoV-2 were associated with Huanan seafood and live animal markets. However, no animal source has been
48 49 50 51 52 53 54 55 56 57	Coronaviruses can cause different types of infections in diverse animals. In humans, they mainly produce respiratory tract infections, as observed with SARS-CoV and MERS-Cov (7, 8). Sequencing and phylogenetic analyses have shown that the novel SARSCoV-2 virus is closely related to a group of human SARS-like coronaviruses and bat SARS-related coronaviruses (9– 11). The origin of SARSCoV-2 remains unclear; it is unknown how it was first transmitted to humans. The high prevalence of SARS-related coronaviruses in bats has suggested that a bat coronavirus might have jumped into a civet or some other mammal, and from there to humans, which started the former 2003 SARS epidemic. Initial confirmed cases of SARSCoV-2 were associated with Huanan seafood and live animal markets. However, no animal source has been identified to date, and spillover events may continue to occur. Although bats might be the

On December 30, 2019, a cluster of 27 pneumonia cases (including 7 severe cases) of unknown

AAC

Antimicrobial Agents and Chemotherapy source of SARSCoV-2, it is critical to identify the intermediate species to stop the current spread
and to prevent future human SARS-related coronavirus epidemics.

60

A key question is whether the current SARSCoV-2 epidemic is similar to other SARS outbreaks or 61 62 whether it shows different features. The epidemiological and clinical characteristics of SARSCoV-2 indicate that this new outbreak is different from the 2003-SARS. SARSCoV-2 displays 63 higher transmissibility and lower mortality compared to the 2003-SARS (1, 3, 4). SARSCoV-2 has 64 65 shown efficient intra-familial spread (4). The asymptomatic period of SARSCoV-2 infections oscillates between 2 and 14 days, and some individuals probably transmit the virus without 66 67 developing any disease symptoms. It remains to be elucidated whether this virus replicates more readily in the upper airway than SARS-CoV and MEERS-CoV and whether it is similar to 68 69 other human coronaviruses (HCoV) that cause colds, but not pneumonia. It will be necessary to identify molecular determinants that mediate transmission from animal to human, and from 70 71 human to human. Of note, in the novel SARS-CoV-2, the nucleotide sequence of the external 72 ectodomain in the spike protein receptor-binding domain is different from that of the 2003 73 SARS-CoV. When individual bat coronavirus spike genes were introduced into SARS-CoV 74 infectious clones, the SARS-CoV/bat-CoV spike viruses could bind to the human, bat, or civet angiotensin converting enzyme 2 (ACE2) cellular receptor (12). Understanding the interaction 75 76 between this novel SARS-CoV-2 spike protein and the host ACE2 receptor might reveal how this virus overcame the species barrier between animals and humans. As discussed below, this 77 78 information might promote the design of effective antivirals.

79

80	To predict new zoonotic coronavirus jumps across species and to understand the rate of virus
81	spread among people, it is crucial to determine whether SARSCoV-2 is mutating to improve its
82	binding to human receptors for infection. As an RNA virus, SARS-CoV-2 has intrinsic genetic
83	variability, which results in a high mutation rate. Moreover, coronaviruses have the largest
84	genomes (\sim 30 kb) among RNA viruses. However, part of their sequence encodes a
85	proofreading 3' exonuclease that can increase replication fidelity (13). It has been suggested
86	that any adaptation in the SARS-CoV-2 sequence that might make it more efficient at
87	transmitting from person to person might also increase its virulence (14). However, this
88	mechanism could lead to a genetic bottleneck, known as Muller's ratchet, which could
89	significantly decrease viral fitness, (15). Muller's ratchet predicts that, when mutation rates are
90	high and a significant proportion of mutations are deleterious, a type of irreversible ratchet
91	mechanism will gradually reduce the mean fitness of small populations of asexual organisms.
92	Because genetic bottlenecks for RNA viruses often occur during respiratory droplet
93	transmissions, the SARS-CoV-2 is expected to become less virulent through human to human
94	transmissions (16).
95	
96	From the public health perspective, we urgently need to develop an effective vaccine and
97	antiviral therapeutics to stop the SARS-CoV-2 epidemic. Moreover, social and economic issues
98	generated by this epidemic also call for rapid interventions. This review focuses on the
99	potential of repurposing preexisting compounds that might provide new opportunities for
100	treating people infected with SARS-CoV-2. Previous work with SARS-CoV and MERS-CoV has
101	provided an opportunity to accelerate the identification of meaningful therapies for fighting the

Antimicrobial Agents and Chemotherapy

AAC

Antimicrobial Agents and Chemotherapy novel SARS-CoV-2 epidemic. Nevertheless, we must be aware that, currently, no compound
that targets SARS-CoV or MERS-CoV has moved beyond phase 1 trials.

104

The most promising antiviral for fighting SARS-CoV-2 is remdesivir (GS-5734). Remdesivir is an 105 106 adenosine nucleotide analogue prodrug with broad-spectrum antiviral activity against 107 filoviruses, paramyxoviruses, pneumoviruses, and pathogenic coronaviruses, like SARS-CoV and 108 MERS-CoV (17). Pharmacokinetic studies have been completed and clinical trials are ongoing 109 for testing remdesivir efficacy in treating Ebola virus (18). Previous studies have indicated that 110 nucleotide analogues generally show low efficacy against coronaviruses, due to the virus 111 exonuclease proofreading enzyme. Nevertheless, remdesivir was effective against SARS-CoV, 112 MERS-CoV, and bat-CoV strains (17). In tissue cultures, remdesivir displayed half-maximum 113 effective concentrations (EC50s) of 0.069 for SARS-CoV and 0.074 µM for MERS-CoV. Of note, tissue culture studies have shown that remdesivir is also active in the submicromolar EC50 114 115 range against a number of highly divergent coronaviruses, including the endemic human CoVs, 116 OC43 (HCoV-OC43) and 229E (HCoV-229E). Thus, remdesivir has broad-spectrum anti-CoV 117 activity (19). In a mouse model of SARS-CoV pathogenesis, prophylactic and early therapeutic 118 administration of remdesivir significantly reduced the lung viral load. Viral titers were reduced by >2 orders of magnitude on day 4 or 5 post infection. Remdesivir improved the clinical signs 119 120 of disease and respiratory function compared to untreated control animals (17). Comparable results were obtained with MERS-CoV in prophylactic studies carried out with a MERS-CoV 121 122 mouse transgenic model. In that model, a humanized MERS-CoV receptor (dipeptidyl peptidase 123 4, hDPP4) was expressed and carboxylesterase 1c (Ces1c) was deleted to improve the

124	pharmacokinetics of nucleotide prodrugs (20). Remdesivir specificity for coronavirus was
125	demonstrated by propagating the virus in tissue culture. After 23 passages in the presence of
126	drug, two mutations were identified (F276L and V553L) in the viral RNA-dependent RNA
127	polymerase gene. These mutations increased the replication capacity of the virus in the
128	presence of remdesivir (21). However, these amino acid changes decreased the viral fitness and
129	attenuated SARS-CoV pathogenesis in mice (21). The efficacy of prophylactic and therapeutic
130	remdesivir treatment was recently tested in a nonhuman primate (rhesus macaque) model of
131	MERS-CoV infection (22). When prophylactic remdesivir treatment was initiated 24 h prior to
132	inoculation, MERS-CoV was prevented from inducing clinical disease and inhibited from
133	replicating in respiratory tissues, which prevented the formation of lung lesions. Similar results
134	were obtained when therapeutic remdesivir treatment was initiated at 12 h after virus
135	inoculation (22). Human safety data are available for remdesivir (18); thus, human trials can be
136	initiated for testing the efficacy of this compound against novel coronaviruses.
137	
138	Therapies that are approved by the Food and Drug Administration (FDA) have been evaluated
139	for antiviral activity against SARS-CoV and MERS-CoV. For example, lopinavir (LPV), a human
140	immunodeficiency virus 1 (HIV-1) protease inhibitor, was combined with ritonavir (RTV) to
141	increase the LPV half-life. LPV/RTV was shown to be effective against SARS-CoV in patients and
142	in tissue culture. The estimated EC50 in fetal rhesus kidney-4 cells was 4 μ g/ml (23). LPV/RTV
143	also reduced weight loss, clinical scores, viral titers, and disease progression in marmosets
144	infected with MERS-CoV (24). Nevertheless, the antiviral activity of LPV against MERS-CoV in

Accepted Manuscript Posted Online

Antimicrobial Agents and Chemotherapy

AAC

145 tissue culture remains controversial. No optimal EC50 was found in Vero cells (25), but an EC50 of 8 μ M was reported in Huh7 cells (26). 146

147

148	Clinical observations in animals and humans showed that MERS-CoV infections were mediated
149	by both virus replication and host inflammatory responses. Those findings led to explorations of
150	combination therapies that included types I and II interferons (IFN I and II). Interferon beta
151	(IFNb) displayed the best efficacy, with EC50s of 1.37-17 IU/ml, for reducing MERS-CoV
152	replication in tissue culture (25, 27). Similar to LPV/RTV, clinical improvements with IFNb were
153	observed in common marmosets infected with MERS-CoV (24). In the Kingdom of South Arabia,
154	an ongoing randomized control trial (MIRACLE Trial) was initiated to determine whether the
155	combination of LPV/RTV and IFNb could improve clinical outcomes in MERS-CoV infections (28).
156	Importantly, another controlled trial was launched in China to test the efficacy of LPV/RTV and
157	IFN α -2b in hospitalized patients with SARS-CoV-2 infections (ChiCTR2000029308).
158	
159	The prophylactic and therapeutic properties of remdesivir and LPV/RTV-IFNb were compared in
160	a humanized transgenic mouse MERS-CoV infection model (29). Remdesivir improved
161	pulmonary function, reduced lung viral loads, and ameliorated severe lung pathology. In
162	contrast, prophylactic LPV/RTV-IFNb only slightly reduced viral loads and did not impact other
163	disease parameters, and therapeutic LPV/RTV-IFNb improved pulmonary function, but did not
164	reduce virus replication or severe lung pathology (29). Overall, these results indicated that
165	remdesivir showed more potential than LPV/RTV-IFNb for treating MERS-CoV infections.
166	

Accepted Manuscript Posted Online

Downloaded from http://aac.asm.org/ on March 16, 2020 by guest

167	Ribavirin, a guanosine analogue, is an antiviral compound used to treat several virus infections,
168	including respiratory syncytial virus, hepatitis C virus, and some viral hemorrhagic fevers. In
169	most cases, ribavirin is combined with IFN. Ribavirin was first marketed in 1980 for the
170	treatment of respiratory syncytial virus in children. Although promising results were obtained
171	with ribavirin and IFN $lpha$ -2b in a MERS-CoV rhesus macaque model (30), data have been
172	conflicting on patients with MERS-CoV infections that were treated with a combination of
173	ribavirin and IFN (either $\alpha 2a$ or $\beta 1$) (31). However, ribavirin reduces hemoglobin
174	concentrations, an undesirable side effect in patients with respiratory disorders. This feature
175	reduces its potential as an antiviral against SARS-CoV-2.
176	
177	Work with influenza virus has shown that monoclonal and polyclonal antibodies can be useful
178	prophylactic and therapeutic tools. Several antibodies have been shown to bind influenza virus
179	hemagglutinin and inhibit virus replication (12). For example, human immunoglobulin G1 (IgG1)
180	monoclonal antibody (MHAA4549A) binds to a highly conserved epitope on the stalk of
181	influenza A hemagglutinin. In a phase 2 human influenza A virus challenge study, MHAA4549A
182	significantly reduced the clinical symptoms and viral burden relative to placebo (32). Another
183	example is VIS410, a monoclonal antibody engineered to target all known influenza A strains. A
184	phase 2a trial showed that VIS410 had some clinical benefits (33). Current development efforts
185	in monoclonal and polyclonal antibodies against coronaviruses are mainly targeting MERS-CoV.
186	In a phase 1 clinical trial, a human polyclonal antibody, SAB-301, which is generated in trans-
187	chromosomic cattle, was found to be safe and well tolerated in healthy participants. (34).
188	However, therapeutic treatment with human monoclonal antibodies did not protect against the

Antimicrobial Agents and Chemotherapy severe disease or the loss of lung function induced by MERS-CoV in animal models (20). The
lack of viral sequence homology among different human coronaviruses suggests that current
investigational antibody-based therapeutics will not be effective against novel virus variants.
Nevertheless, immune-based therapies should be not discarded, when considering future
treatments for novel coronaviruses.

194

195 Another potential treatment option could be the use of novel coronavirus sera prepared from 196 the blood of patients in convalescence (convalescent sera). Passive immunization is well 197 established for viral infection prophylaxis. Polyclonal antibody products have been licensed that 198 target cytomegalovirus, hepatitis B virus, and varicella-zoster virus. A meta-analysis of reports 199 on the 1918 influenza A (H1N1) epidemic concluded that early administration of convalescent 200 blood products reduced the absolute risk of pneumonia-related death from 37% to 16% (35). 201 Nevertheless, the appropriate titer of convalescent sera antibody that is required for 202 therapeutic efficacy against SARS-CoV-2 remains to be determined. Moreover, additional 203 studies performed with influenza virus have produced controversial results regarding the clinical benefit of administering high titers of anti-influenza immunoglobulins (36). Finally, it 204 205 remains unclear whether a sufficient pool of potential donors is feasible. Work carried out with MERS-CoV showed that sera from patients recovering from infections did not contain sufficient 206 207 antibody titers for therapeutic use (37).

Downloaded from http://aac.asm.org/ on March 16, 2020 by guest

208

Another interesting therapeutic alternative that was previously explored with influenza virus is
to target cellular components involved in the host inflammatory response to the infection. For

211	example, the activation of the inflammatory response to an infection can induce a cytokine
212	outburst that results in an acute lung injury. An example of a therapy for this type of infection
213	has been to target the cellular toll-like receptor 4 (TLR4) with specific antibodies. TLR4 is a
214	transmembrane protein that belongs to the pattern recognition receptor (PRR) family. The
215	prototype pathogen-associated molecular pattern (PAMP) that TLR4 recognizes is the gram-
216	negative bacteria, endotoxin, lipopolysaccharide (LPS). TLR4 has been implicated in the
217	pathology associated with other infections and with tissue damage caused by non-infectious
218	insults. TLR4 activation leads to the NF-κB intracellular signaling pathway and inflammatory
219	cytokine production, which activate the innate immune system. Interestingly, TLR4-null mice
220	were highly resistant to infection by the mouse-adapted influenza A virus (38). Thus, protection
221	against influenza infections was achieved by targeting TLR4 with small molecule antagonists,
222	like TAK-242, or with anti-TLR4-specific antibodies (39, 40). Indeed, targeting a cellular protein
223	would overcome the drawbacks associated with virus or coronavirus genetic heterogeneity.
224	
225	The high mortally rates observed in some emerging respiratory diseases induced by viruses like
226	MERS-CoV, SARS-CoV, and novel influenza A strains (H5N1) has given rise to the hypothesis that
227	the pro-inflammatory response might be involved in the disease pathogenesis. Consequently,
228	immunosuppressants (e.g., corticosteroids) might be used as an adjunct for treating severe
229	forms of the disease. However, the therapeutic use of immunosuppressants is not free of
230	controversy. To date, no conclusive results have been found for the effects of
231	immunosuppressants in severe influenza virus infections (12). Furthermore, the use of

232 corticosteroids to treat influenza virus has been associated with an increased risk of

11

<u> </u>		
Þ		
ischi	233	superinfection, prolonged viral replication, and an increased risk of death (41). In contrast,
anu	234	corticosteroid treatment for MERS-CoV infections was not significantly associated with
∑ o	235	mortality, although a delay in MERS-CoV RNA clearance was observed (42). Further studies
pteo	236	should be performed to clarify the potential clinical benefit of prescribing immunosuppressants
Acce	237	for coronavirus infections.

238

252

239	To end this minireview, we will discuss an interesting potential antiviral strategy. The spike
240	protein of SARS-CoV mediates viral entry into target cells. Intriguingly, the cleavage and
241	activation of the SARS-CoV spike protein by a host cell protease is essential for infectious viral
242	entry (43). This host protease could be a type II transmembrane serine protease, TMPRSS2,
243	which was shown to cleave and activate SARS-CoV spike protein in cell cultures. Therefore,
244	TMPRSS2 is a potential a target for antiviral interventions. For example, the serine protease
245	inhibitor, camostat mesylate, inhibits the enzymatic activity of TMPRSS2 (44). Recently, K11777,
246	a cysteine protease inhibitor, was shown in tissue cultures to inhibit SARS-CoV and MERS-CoV
247	replication in the sub-nanomolar range (45). Future tissue culture and animal model studies
248	should be conducted to clarify the potential antiviral activity of targeting TMPRSS2.
249	
250	By the end of February 2020, two months after the first cases of SARS-CoV-2 were reported in

Downloaded from http://aac.asm.org/ on March 16, 2020 by guest

China, several hundreds of new infection cases had been registered, mainly in other Asian 251

regions and Europe. This news has strongly suggested that we are in the thick of a SARS-CoV-2 253 pandemic. Social alarm and health authorities have called for the development of therapeutic

254 alternatives for fighting the current, and possibly new, coronavirus epidemics. Animal models

255	and clinical studies are urgently needed for evaluating the effectiveness and safety of promising
256	antiviral compounds that target the virus and/or the immunopathology involved in the host
257	responses. The identification and characterization of novel compounds and therapeutic
258	alternatives will be required to better control this probable pandemic outbreak.
259	
260	Funding. This work was supported by the Spanish Ministry of Science and Innovation [SAF2016–
261	75277-R].
262	
263	Conflicts of interest. The author declares no conflict of interest.

264

Antimicrobial Agents and Chemotherapy

•

266	1.	WHO. 2020. Novel coronavirus (2019-nCoV) situation reports. World Health
267		Organisation. https//www.who.int/emergencies/diseases/novel-coronavirus-
268		2019/situation-reports/.
269	2.	Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J,
270		Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao
271		Z, Jin Q, Wang J, Cao B. 2020. Clinical features of patients infected with 2019 novel
272		coronavirus in Wuhan, China. Lancet 395:497–506.
273	3.	Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T,
274		Zhang X, Zhang L. 2020. Epidemiological and clinical characteristics of 99 cases of 2019
275		novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395:507–513.
276	4.	Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, Xing F, Liu J, Yip CCY, Poon RWS, Tsoi
277		HW, Lo SKF, Chan KH, Poon VKM, Chan WM, Ip JD, Cai JP, Cheng VCC, Chen H, Hui CKM,
278		Yuen KY. 2020. A familial cluster of pneumonia associated with the 2019 novel
279		coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet
280		395:514–523.
281	5.	Gorbalenya AE. 2020. Severe acute respiratory syndrome-related coronavirus – The
282		species and its viruses, a statement of the Coronavirus Study Group. bioRxiv
283		2020.02.07.937862.
284	6.	Team TNCPERE. 2020. The Epidemiological Characteristics of an Outbreak of 2019 Novel
285		Coronavirus Diseases (COVID-19) — China, 2020. China CDC Wkly 2.
286	7.	Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. 2012.
287		Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J
288		Med 367:1814–1820.
289	8.	Drosten C, Günther S, Preiser W, Van der Werf S, Brodt HR, Becker S, Rabenau H, Panning
290		M, Kolesnikova L, Fouchier RAM, Berger A, Burguière AM, Cinatl J, Eickmann M, Escriou
291		N, Grywna K, Kramme S, Manuguerra JC, Müller S, Rickerts V, Stürmer M, Vieth S, Klenk
292		HD, Osterhaus ADME, Schmitz H, Doerr HW. 2003. Identification of a novel coronavirus in
293		patients with severe acute respiratory syndrome. N Engl J Med 348:1967–1976.
294	9.	Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L, Chen
295		H-D, Chen J, Luo Y, Guo H, Jiang R-D, Liu M-Q, Chen Y, Shen X-R, Wang X, Zheng X-S, Zhao
296		K, Chen Q-J, Deng F, Liu L-L, Yan B, Zhan F-X, Wang Y-Y, Xiao G-F, Shi Z-L. 2020. A
297		pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature
298		Feb 3[Online ahead of print].
299	10.	Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan
300		F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Zhao L, Chen J, Meng Y, Wang J, Lin Y, Yuan J, Xie
301		Z, Ma J, Liu WJ, Wang D, Xu W, Holmes EC, Gao GF, Wu G, Chen W, Shi W, Tan W. 2020.
302		Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for
303		virus origins and receptor binding. Lancet 395:565-574.
304	11.	Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F,
305		Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W. 2020. A Novel Coronavirus from Patients
306		with Pneumonia in China, 2019. N Engl J Med 382:727-733.
307	12.	Beigel JH, Nam HH, Adams PL, Krafft A, Ince WL, El-Kamary SS, Sims AC. 2019. Advances
308		in respiratory virus therapeutics – A meeting report from the 6th isirv Antiviral Group

Antimicrobial Agents and Chemotherapy

AAC

309		conference. Antiviral Res 167:45-67.
310	13.	Bradwell K, Combe M, Domingo-Calap P, Sanjuán R. 2013. Correlation between mutation
311		rate and genome size in riboviruses: Mutation rate of bacteriophage QB. Genetics
312		195:243–251.
313	14.	Wang C. Horby PW. Havden FG. Gao GF. 2020. A novel coronavirus outbreak of global
314		health concern. Lancet 395:470-473.
315	15	Chao L 1990 Fitness of RNA virus decreased by Muller's ratchet Nature 348-454–455
316	16	Duarte F. Clarke D. Mova A. Domingo F. Holland I. 1992. Rapid fitness losses in
317	10.	mammalian RNA virus clones due to Muller's ratchet. Proc Natl Acad Sci II S A 89:6015-
318		6019
319	17	Sheahan TP Sims AC Graham RI Menachery VD Gralinski LE Case IB Leist SR Pyrc K
320	17.	Feng IV Trantcheva I Bannister R Park V Bahusis D Clarke MO MacKman RI Snahn IF
320		Palmiotti CA Siegel D Ray AS Ciblar T Jordan R Denison MR Baric RS 2017 Broad-
321		spectrum antiviral GS-5734 inhibits both enidemic and zoonatic coronaviruses. Sci Transl
323		Med 9.
324	18.	Mulangu S. Dodd LE. Davey RT. Mbaya OT. Proschan M. Mukadi D. Manzo ML. Nzolo D.
325		Oloma AT, Ibanda A, Ali R, Coulibaly S, Levine AC, Grais R, Diaz J, Clifford Lane H.
326		Muvembe-Tamfum JJ. Sivahera B. Camara M. Kojan R. Walker R. Dighero-Kemp B. Cao H.
327		Mukumbavi P. Mbala-Kingebeni P. Ahuka S. Albert S. Bonnett T. Crozier I. Duvenhage M.
328		Proffitt C. Teitelbaum M. Moench T. Aboulhab J. Barrett K. Cahill K. Cone K. Eckes R.
329		Hensley L. Herpin B. Higgs E. Ledgerwood J. Pierson J. Smolskis M. Sow Y. Tierney J.
330		Sivapalasingam S. Holman W. Gettinger N. Vallée D. Nordwall J. 2019. A randomized.
331		controlled trial of Ebola virus disease therapeutics. N Engl J Med 381:2293–2303.
332	19.	Brown AJ, Won JJ, Graham RL, Dinnon KH, Sims AC, Feng JY, Cihlar T, Denison MR, Baric
333		RS. Sheahan TP. 2019. Broad spectrum antiviral remdesivir inhibits human endemic and
334		zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase.
335		Antiviral Res 169:104541.
336	20.	Cockrell AS, Yount BL, Scobey T, Jensen K, Douglas M, Beall A, Tang XC, Marasco WA,
337	-	Heise MT. Baric RS. 2016. A mouse model for MERS coronavirus-induced acute
338		respiratory distress syndrome. Nat Microbiol 2:16226.
339	21.	Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng
340		JY, Jordan R, Ray AS, Cihlar T, Siegel D, Mackman RL, Clarke MO, Baric RS, Denison MR,
341		2018. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the
342		viral polymerase and the proofreading exoribonuclease. MBio 9:e00221-18.
343	22.	de Wit E. Feldmann F. Cronin J. Jordan R. Okumura A. Thomas T. Scott D. Cihlar T.
344		Feldmann H. 2020. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the
345		rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci 201922083.
346	23.	Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, Kao RYT, Poon LLM, Wong
347	-	CLP. Guan Y. Peiris JSM. Yuen KY. 2004. Role of lopinavir/ritonavir in the treatment of
348		SARS: Initial virological and clinical findings. Thorax 59:252–256.
349	24.	Chan JFW, Yao Y, Yeung ML, Deng W, Bao L, Jia L. Li F. Xiao C. Gao H. Yu P. Cai JP. Chu H.
350		Zhou J, Chen H, Qin C, Yuen KY. 2015. No TitleTreatment With Lopinavir/Ritonavir or
351		Interferon-B1b Improves Outcome of MERS-CoV Infection in a Nonhuman Primate Model
352		of Common Marmoset. J Infect Dis 212:1904–1913.

353 2	25.	Chan JFW, Chan KH, Kao RYT, To KKW, Zheng BJ, Li CPY, Li PTW, Dai J, Mok FKY, Chen H,
354		Hayden FG, Yuen KY. 2013. Broad-spectrum antivirals for the emerging Middle East
355		respiratory syndrome coronavirus. J Infect 67:606–616.
356 2	26.	De Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, Van Nieuwkoop S,
357		Bestebroer TM, Van Den Hoogen BG, Neyts J, Snijder EJ. 2014. Screening of an FDA-
358		approved compound library identifies four small-molecule inhibitors of Middle East
359		respiratory syndrome coronavirus replication in cell culture. Antimicrob Agents
360		Chemother 58:4875–4884.
361 2	27.	Hart BJ, Dyall J, Postnikova E, Zhou H, Kindrachuk J, Johnson RF, Olinger GG, Frieman MB,
362		Holbrook MR, Jahrling PB, Hensley L. 2014. Interferon-β and mycophenolic acid are
363		potent inhibitors of middle east respiratory syndrome coronavirus in cell-based assays. J
364		Gen Virol 95:571–577.
365 2	28.	Arabi YM, Alothman A, Balkhy HH, Al-Dawood A, AlJohani S, Al Harbi S, Kojan S, Al Jeraisy
366		M, Deeb AM, Assiri AM, Al-Hameed F, AlSaedi A, Mandourah Y, Almekhlafi GA, Sherbeeni
367		NM, Elzein FE, Memon J, Taha Y, Almotairi A, Maghrabi KA, Qushmag I, Al Bshabshe A,
368		Kharaba A, Shalhoub S, Jose J, Fowler RA, Hayden FG, Hussein MA, Martin GS, Schoenfeld
369		DA, Walmsley SL, Carson S, Harbi S Al, Jeraisy M Al, Muhaidib M Al, Musharaf S, Anizi H
370		Al, Dael R, AlMazroa M, Asiri A, Memish ZA, Ghazal SS, Alfaraj SH, Harthy A Al, Sulaiman
371		M Al, Mady A, Ahmad A, Ghaleb A Almekhlafi, Muhammed R, Samirrai S Al, Awad S,
372		Cabal RC, Onazi B Al, Aljuhani M, Vince M, Enani M Al, Algurashi A, Alenezi F, Alkhani N,
373		Thagafi A, Oraabi O Al, Rifai J, Elsamadisi P, Medhat SH, Basher SAB, Abduldhaher M,
374		Bajhamoum W, Alahsa SS, Bashir S, Al-Dossary I, Al-Muhainy Dammam B, Khobar SS Al,
375		Alshahrani MS, Al Jabri A, Farid M, Alaidarous A, Alseraihi W, Shahada H, Taif JS. 2018.
376		Treatment of Middle East Respiratory Syndrome with a combination of lopinavir-
377		ritonavir and interferon-β1b (MIRACLE trial): Study protocol for a randomized controlled
378		trial. Trials 19:81.
379 2	9.	Sheahan TP, Sims AC, Leist SR, Schäfer A, Won J, Brown AJ, Montgomery SA, Hogg A,
380		Babusis D, Clarke MO, Spahn JE, Bauer L, Sellers S, Porter D, Feng JY, Cihlar T, Jordan R,
381		Denison MR, Baric RS. 2020. Comparative therapeutic efficacy of remdesivir and
382		combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun
383		11:222.
384 3	80.	Falzarano D, De Wit E, Rasmussen AL, Feldmann F, Okumura A, Scott DP, Brining D,
385		Bushmaker T, Martellaro C, Baseler L, Benecke AG, Katze MG, Munster VJ, Feldmann H.
386		2013. Treatment with interferon- α 2b and ribavirin improves outcome in MERS-CoV-
387		infected rhesus macaques. Nat Med 19:1313–1317.
388 3	31.	Arabi, YM, Shalhoub, S, Omari, AA, Mandourah, Y, Al-Hameed, F, Sindi A, Alraddadi, B,
389		Motairi, AA, Khatib, KA, Mommin, AA, Qushmaq, IA, Mady A, Solaiman, O, Aithan, AA,
390		Balkhy, HH, Al-Raddadi, R, Rajab, A, Mekhlafi G, Harthy, AA, Kharaba, A, Al-Jabbary, A,
391		Pinto, R. Sadat, M. Mutairi, HA O. EA. Jose, J. Deeb, AM, Merson, L. Havden, FG. Fowler,
392		R. Aldawood A. 2017. Effect of ribavirin and interferon on the outcome of critically ill
393		patients with MERS. Am J Respir Crit Care Med 195:A6067.
394 3	32.	McBride JM, Lim JJ, Burgess T, Deng R, Derby MA. Maia M. Horn P. Siddigui O. Sheinson
395		D, Chen-Harris H, Newton EM, Fillos D, Nazzal D, Rosenberger CM, Ohlson MB. Lambkin-
396		Williams R, Fathi H, Harris JM, Tavela JA. 2017. Phase 2 randomized trial of the safety and

397		efficacy of MHAA4549A, a broadly neutralizing monoclonal antibody, in a human
398		influenza a virus challenge model. Antimicrob Agents Chemother 61: e01154-17.
399	33.	Hershberger E, Sloan S, Narayan K, Hay CA, Smith P, Engler F, Jeeninga R, Smits S, Trevejo
400		J, Shriver Z, Oldach D. 2019. Safety and efficacy of monoclonal antibody VIS410 in adults
401		with uncomplicated influenza A infection: Results from a randomized, double-blind,
402		phase-2, placebo-controlled study. EBioMedicine 40:574–582.
403	34.	Beigel JH, Voell J, Kumar P, Raviprakash K, Wu H, Jiao JA, Sullivan E, Luke T, Davey RT.
404		2018. Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus
405		antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind,
406		single-dose-escalation study. Lancet Infect Dis 18:410–418.
407	35.	Luke TC. Kilbane EM. Jackson JL. Hoffman SL. 2006. Meta-analysis: Convalescent blood
408		products for Spanish influenza pneumonia: A future H5N1 treatment? Ann Intern Med.
409		American College of Physicians 145:599-609.
410	36.	Hung IEN. To KKW. Lee CK. Lee KL. Yan WW. Chan K. Chan WM. Ngai CW. Law KI. Chow
411		FL, Liu R, Lai KY, Candy CC, Liu SH, Chan KH, Lin CK, Yuen KY, 2013, Hyperimmune IV
412		immunoglobulin treatment: A multicenter double-blind randomized controlled trial for
413		patients with severe 2009 influenza A(H1N1) infection. Chest 144:464–473.
414	37.	Arabi Y. Balkhy H. Hajeer AH. Bouchama A. Havden FG. Al-Omari A. Al-Hameed FM. Taha
415	•	Y. Shindo N. Whitehead J. Merson I. Allohani S. Al-Khairy K. Carson G. Luke TC. Hensley L.
416		Al-Dawood A. Al-Oahtani S. Modiarrad K. Sadat M. Rohde G. Leport C. Fowler R. 2015.
417		Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for
418		patients with Middle Fast respiratory syndrome coronavirus infection: a study protocol.
419		Springerplus 4:1–8.
420	38.	Shirey KA, Lai W, Scott AJ, Lipsky M, Mistry P, Pletneva LM, Karp CL, McAlees J, Gioannini
421		TI, Weiss J, Chen WH, Ernst RK, Rossignol DP, Gusovsky F, Blanco JCG, Vogel SN, 2013.
422		The TI B4 antagonist Fritoran protects mice from lethal influenza infection. Nature
423		497:498–502.
424	39.	Perrin-Cocon L. Aublin-Gex A. Sestito SF. Shirey KA. Patel MC. André P. Blanco IC. Vogel
425		SN Peri F Lotteau V 2017 TLR4 antagonist FP7 inhibits LPS-induced cytokine production
426		and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza
427		infection Sci Rep 7:40791
428	40.	Piao W. Shirey KA. Ru I W. Lai W. Szmacinski H. Snyder GA. Sundberg FI. Lakowicz IR.
429		Vogel SN. Toshchakov VY. 2015. A Decov Peptide that Disrupts TIRAP Recruitment to
430		TI Rs Is Protective in a Murine Model of Influenza. Cell Rep 11:1941–1952.
431	41	Rodrigo C Leonardi-Bee L Nguyen-Van-Tam L Lim WS 2016 Corticosteroids as
432		adjunctive therapy in the treatment of influenza. Cochrane Database Syst Rev. John
433		Wiley and Sons Ltd 3 CD010406
434	42	Arabi YM Mandourah Y Al-Hameed F Sindi AA Almekhlafi GA Hussein MA Jose J Pinto
435		R. Al-Omari A. Kharaba A. Almotairi A. Al Khatib K. Alraddadi B. Shalhoub S. Abdulmomen
436		A Oushman I Mady A Mady O Al-Aithan AM Al-Raddadi R Ragah A Balkhy HH Balkhy
437		A Deeb AM Al Mutairi H Al-Dawood A Merson L Havden FG Fowler RA 2018
437 428		Corticosteroid therapy for critically ill natients with middle east respiratory syndrome
430		Am I Respir Crit Care Med 197.757–767
440	43	Glowacka I Bertram S Muller MA Allen P Soilleux F Pfefferle S Steffen I Tsegave TS
	-J.	Signation of Section 1, Section 1, Some and E, Frenche S, Stenen 1, 13egave 13,

AAC

441		He Y, Gnirss K, Niemeyer D, Schneider H, Drosten C, Pohlmann S. 2011. Evidence that
442		TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for
443		Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. J Virol
444		85:4122–4134.
445	44.	Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. 2012. Simultaneous
446		Treatment of Human Bronchial Epithelial Cells with Serine and Cysteine Protease
447		Inhibitors Prevents Severe Acute Respiratory Syndrome Coronavirus Entry. J Virol
448		86:6537–6545.
449	45.	Zhou Y, Vedantham P, Lu K, Agudelo J, Carrion R, Nunneley JW, Barnard D, Pöhlmann S,
450		McKerrow JH, Renslo AR, Simmons G. 2015. Protease inhibitors targeting coronavirus

450 McKerrow JH, Renslo AR, Simmons G. 2015.451 and filovirus entry. Antiviral Res 116:76–84.