
1 
 

Compounds with therapeutic potential against novel respiratory 2019 coronavirus  1 

 2 

Miguel Angel Martinez 3 

 4 

IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona (UAB), 5 

Badalona, Spain  6 

 7 

 8 

 9 

Address correspondence to Miguel Angel Martínez, Fundació irsiCaixa, Hospital Universitari Germans 10 

Trias i Pujol, 08916 Badalona, Spain. Tel: +34 934656374; Fax: +34 934653968; E-mail address: 11 

mmartinez@irsicaixa.es  12 

  13 

AAC Accepted Manuscript Posted Online 9 March 2020
Antimicrob. Agents Chemother. doi:10.1128/AAC.00399-20
Copyright © 2020 American Society for Microbiology. All Rights Reserved.

 on M
arch 16, 2020 by guest

http://aac.asm
.org/

D
ow

nloaded from
 

http://aac.asm.org/


2 
 

Abstract 14 

Currently, the expansion of the novel human respiratory coronavirus (known as: SARS-CoV-2, 15 

COVID-2019, or 2019-nCoV) has stressed the need for therapeutic alternatives to alleviate and 16 

stop this new epidemic. The previous epidemics of high-morbidity human coronaviruses, such 17 

as the acute respiratory syndrome coronavirus (SARS-CoV) in 2003, and the Middle East 18 

respiratory syndrome corona virus (MERS-CoV) in 2012, prompted the characterization of 19 

compounds that could be potentially active against the currently emerging novel coronavirus 20 

SARS-CoV-2. The most promising compound is remdesivir (GS-5734), a nucleotide analog 21 

prodrug currently in clinical trials for treating Ebola virus infections. Remdesivir inhibited the 22 

replication of SARS-CoV and MERS-CoV in tissue cultures, and it displayed efficacy in non-23 

human animal models. In addition, a combination of the human immunodeficiency virus type 1 24 

(HIV-1) protease inhibitors, lopinavir/ritonavir, and interferon beta (LPV/RTV-INFb) were shown 25 

to be effective in patients infected with SARS-CoV. LPV/RTV-INFb also improved clinical 26 

parameters in marmosets and mice infected with MERS-CoV. Remarkably, the therapeutic 27 

efficacy of remdesivir appeared to be superior to that of LPV/RTV-INFb against MERS-CoV in a 28 

transgenic humanized mice model. The relatively high mortality rates associated with these 29 

three novel human coronavirus infections, SARS-CoV, MERS-CoV, and SARS-CoV-2, has 30 

suggested that pro-inflammatory responses might play a role in the pathogenesis. It remains 31 

unknown whether the generated inflammatory state should be targeted. Therapeutics that 32 

target the coronavirus alone might not be able to reverse highly pathogenic infections. This 33 

minireview aimed to provide a summary of therapeutic compounds that showed potential in 34 

fighting SARS-CoV-2 infections.  35 
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On December 30, 2019, a cluster of 27 pneumonia cases (including 7 severe cases) of unknown 36 

origin emerged in Wuhan (Hubei, China) and were reported to the National Health Commission 37 

of China (1). In the early stages of this pneumonia, patients developed severe acute respiratory 38 

infection symptoms, and some patients rapidly developed acute respiratory distress syndrome 39 

(2). Real time RT-PCR and deep sequencing analysis from lower respiratory tract samples 40 

identified a novel human coronavirus, now called SARS-CoV-2 (3–5). By the end of January, 41 

2020, nearly 50,000 confirmed cases were reported in China, and the first confirmed cases were 42 

reported in Thailand, Nepal, Republic of Korea, USA, Singapore, France, Viet Nam, Canada, 43 

Australia, Malaysia, Germany, UAE, Finland, Italy, Cambodia, Sri Lanka, the Russian Federation, 44 

Spain, Sweden, India, and the Philippines. Among the patients with confirmed cases, most were 45 

aged 30–80 years and had mild infections (80%). The fatality rate was around 2% (6). 46 

 47 

Coronaviruses can cause different types of infections in diverse animals. In humans, they mainly 48 

produce respiratory tract infections, as observed with SARS-CoV and MERS-Cov (7, 8). 49 

Sequencing and phylogenetic analyses have shown that the novel SARSCoV-2 virus is closely 50 

related to a group of human SARS-like coronaviruses and bat SARS-related coronaviruses (9–51 

11). The origin of SARSCoV-2 remains unclear; it is unknown how it was first transmitted to 52 

humans. The high prevalence of SARS-related coronaviruses in bats has suggested that a bat 53 

coronavirus might have jumped into a civet or some other mammal, and from there to humans, 54 

which started the former 2003 SARS epidemic. Initial confirmed cases of SARSCoV-2 were 55 

associated with Huanan seafood and live animal markets. However, no animal source has been 56 

identified to date, and spillover events may continue to occur. Although bats might be the 57 
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source of SARSCoV-2, it is critical to identify the intermediate species to stop the current spread 58 

and to prevent future human SARS-related coronavirus epidemics.  59 

 60 

A key question is whether the current SARSCoV-2 epidemic is similar to other SARS outbreaks or 61 

whether it shows different features. The epidemiological and clinical characteristics of 62 

SARSCoV-2 indicate that this new outbreak is different from the 2003-SARS. SARSCoV-2 displays 63 

higher transmissibility and lower mortality compared to the 2003-SARS (1, 3, 4). SARSCoV-2 has 64 

shown efficient intra-familial spread (4). The asymptomatic period of SARSCoV-2 infections 65 

oscillates between 2 and 14 days, and some individuals probably transmit the virus without 66 

developing any disease symptoms. It remains to be elucidated whether this virus replicates 67 

more readily in the upper airway than SARS-CoV and MEERS-CoV and whether it is similar to 68 

other human coronaviruses (HCoV) that cause colds, but not pneumonia. It will be necessary to 69 

identify molecular determinants that mediate transmission from animal to human, and from 70 

human to human. Of note, in the novel SARS-CoV-2, the nucleotide sequence of the external 71 

ectodomain in the spike protein receptor-binding domain is different from that of the 2003 72 

SARS-CoV. When individual bat coronavirus spike genes were introduced into SARS-CoV 73 

infectious clones, the SARS-CoV/bat-CoV spike viruses could bind to the human, bat, or civet 74 

angiotensin converting enzyme 2 (ACE2) cellular receptor (12). Understanding the interaction 75 

between this novel SARS-CoV-2 spike protein and the host ACE2 receptor might reveal how this 76 

virus overcame the species barrier between animals and humans. As discussed below, this 77 

information might promote the design of effective antivirals.  78 

 79 
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To predict new zoonotic coronavirus jumps across species and to understand the rate of virus 80 

spread among people, it is crucial to determine whether SARSCoV-2 is mutating to improve its 81 

binding to human receptors for infection. As an RNA virus, SARS-CoV-2 has intrinsic genetic 82 

variability, which results in a high mutation rate. Moreover, coronaviruses have the largest 83 

genomes (∼30 kb) among RNA viruses. However, part of their sequence encodes a 84 

proofreading 3' exonuclease that can increase replication fidelity (13). It has been suggested 85 

that any adaptation in the SARS-CoV-2 sequence that might make it more efficient at 86 

transmitting from person to person might also increase its  virulence (14). However, this 87 

mechanism could lead to a genetic bottleneck, known as Muller’s ratchet, which could 88 

significantly decrease viral fitness, (15). Muller's ratchet predicts that, when mutation rates are 89 

high and a significant proportion of mutations are deleterious, a type of irreversible ratchet 90 

mechanism will gradually reduce the mean fitness of small populations of asexual organisms. 91 

Because genetic bottlenecks for RNA viruses often occur during respiratory droplet 92 

transmissions, the SARS-CoV-2 is expected to become less virulent through human to human 93 

transmissions (16).  94 

 95 

From the public health perspective, we urgently need to develop an effective vaccine and 96 

antiviral therapeutics to stop the SARS-CoV-2 epidemic. Moreover, social and economic issues 97 

generated by this epidemic also call for rapid interventions. This review focuses on the 98 

potential of repurposing preexisting compounds that might provide new opportunities for 99 

treating people infected with SARS-CoV-2. Previous work with SARS-CoV and MERS-CoV has 100 

provided an opportunity to accelerate the identification of meaningful therapies for fighting the 101 
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novel SARS-CoV-2 epidemic. Nevertheless, we must be aware that, currently, no compound 102 

that targets SARS-CoV or MERS-CoV has moved beyond phase 1 trials.  103 

 104 

The most promising antiviral for fighting SARS-CoV-2 is remdesivir (GS-5734). Remdesivir is an 105 

adenosine nucleotide analogue prodrug with broad-spectrum antiviral activity against 106 

filoviruses, paramyxoviruses, pneumoviruses, and pathogenic coronaviruses, like SARS-CoV and 107 

MERS-CoV (17). Pharmacokinetic studies have been completed and clinical trials are ongoing 108 

for testing remdesivir efficacy in treating Ebola virus (18). Previous studies have indicated that 109 

nucleotide analogues generally show low efficacy against coronaviruses, due to the virus 110 

exonuclease proofreading enzyme. Nevertheless, remdesivir was effective against SARS-CoV, 111 

MERS-CoV, and bat-CoV strains (17). In tissue cultures, remdesivir displayed half-maximum 112 

effective concentrations (EC50s) of 0.069 for SARS-CoV and 0.074 μM for MERS-CoV. Of note, 113 

tissue culture studies have shown that remdesivir is also active in the submicromolar EC50 114 

range against a number of highly divergent coronaviruses, including the endemic human CoVs, 115 

OC43 (HCoV-OC43) and 229E (HCoV-229E). Thus, remdesivir has broad-spectrum anti-CoV 116 

activity (19). In a mouse model of SARS-CoV pathogenesis, prophylactic and early therapeutic 117 

administration of remdesivir significantly reduced the lung viral load.  Viral titers were reduced 118 

by >2 orders of magnitude on day 4 or 5 post infection. Remdesivir improved the clinical signs 119 

of disease and respiratory function compared to untreated control animals (17). Comparable 120 

results were obtained with MERS-CoV in prophylactic studies carried out with a MERS-CoV 121 

mouse transgenic model. In that model, a humanized MERS-CoV receptor (dipeptidyl peptidase 122 

4, hDPP4) was expressed and carboxylesterase 1c (Ces1c) was deleted to improve the 123 
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pharmacokinetics of nucleotide prodrugs (20). Remdesivir specificity for coronavirus was 124 

demonstrated by propagating the virus in tissue culture. After 23 passages in the presence of 125 

drug, two mutations were identified (F276L and V553L) in the viral RNA-dependent RNA 126 

polymerase gene. These mutations increased the replication capacity of the virus in the 127 

presence of remdesivir (21). However, these amino acid changes decreased the viral fitness and 128 

attenuated SARS-CoV pathogenesis in mice (21). The efficacy of prophylactic and therapeutic 129 

remdesivir treatment was recently tested in a nonhuman primate ( rhesus macaque) model of 130 

MERS-CoV infection (22). When prophylactic remdesivir treatment was initiated 24 h prior to 131 

inoculation, MERS-CoV was prevented from inducing clinical disease and inhibited from 132 

replicating in respiratory tissues, which prevented the formation of lung lesions. Similar results 133 

were obtained when therapeutic remdesivir treatment was initiated at 12 h after virus 134 

inoculation (22). Human safety data are available for remdesivir (18); thus, human trials can be 135 

initiated for testing the efficacy of this compound against  novel coronaviruses.  136 

 137 

Therapies that are approved by the Food and Drug Administration (FDA) have been evaluated 138 

for antiviral activity against SARS-CoV and MERS-CoV. For example, lopinavir (LPV), a human 139 

immunodeficiency virus 1 (HIV-1) protease inhibitor, was combined with ritonavir (RTV) to 140 

increase the LPV half-life.  LPV/RTV was shown to be effective against SARS-CoV in patients and 141 

in tissue culture. The estimated EC50 in fetal rhesus kidney-4 cells was 4 µg/ml (23). LPV/RTV 142 

also reduced weight loss, clinical scores, viral titers, and disease progression in marmosets 143 

infected with MERS-CoV (24). Nevertheless, the antiviral activity of LPV against MERS-CoV in 144 
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tissue culture remains controversial. No optimal EC50 was found in Vero cells (25), but an EC50 145 

of 8 µM was reported in Huh7 cells (26).  146 

 147 

Clinical observations in animals and humans showed that MERS-CoV infections were mediated 148 

by both virus replication and host inflammatory responses. Those findings led to explorations of 149 

combination therapies that included types I and II interferons (IFN I and II). Interferon beta 150 

(IFNb) displayed the best efficacy, with EC50s of 1.37-17 IU/ml, for reducing MERS-CoV 151 

replication in tissue culture (25, 27). Similar to LPV/RTV, clinical improvements with IFNb were 152 

observed in common marmosets infected with MERS-CoV (24). In the Kingdom of South Arabia, 153 

an ongoing randomized control trial (MIRACLE Trial) was initiated to determine whether the 154 

combination of LPV/RTV and IFNb could improve clinical outcomes in MERS-CoV infections (28). 155 

Importantly, another controlled trial was launched in China to test the efficacy of LPV/RTV and 156 

IFNα-2b in hospitalized patients with SARS-CoV-2 infections (ChiCTR2000029308).  157 

 158 

The prophylactic and therapeutic properties of remdesivir and LPV/RTV-IFNb were compared in 159 

a humanized transgenic mouse MERS-CoV infection model (29). Remdesivir improved 160 

pulmonary function, reduced lung viral loads, and ameliorated severe lung pathology. In 161 

contrast, prophylactic LPV/RTV-IFNb only slightly reduced viral loads and did not impact other 162 

disease parameters, and therapeutic LPV/RTV-IFNb improved pulmonary function, but did not 163 

reduce virus replication or severe lung pathology (29). Overall, these results indicated that 164 

remdesivir showed more potential than LPV/RTV-IFNb for treating MERS-CoV infections. 165 

 166 
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Ribavirin, a guanosine analogue, is an antiviral compound used to treat several virus infections, 167 

including respiratory syncytial virus, hepatitis C virus, and some viral hemorrhagic fevers. In 168 

most cases, ribavirin is combined with IFN. Ribavirin was first marketed in 1980 for the 169 

treatment of respiratory syncytial virus in children. Although promising results were obtained 170 

with ribavirin and IFNα-2b in a MERS-CoV rhesus macaque model (30), data have been 171 

conflicting on patients with MERS-CoV infections that were treated with a combination of 172 

ribavirin and IFN (either α2a or β1) (31). However, ribavirin reduces hemoglobin 173 

concentrations, an undesirable side effect in patients with respiratory disorders. This feature 174 

reduces its potential as an antiviral against SARS-CoV-2. 175 

 176 

Work with influenza virus has shown that monoclonal and polyclonal antibodies can be useful 177 

prophylactic and therapeutic tools. Several antibodies have been shown to bind influenza virus 178 

hemagglutinin and inhibit virus replication (12). For example, human immunoglobulin G1 (IgG1) 179 

monoclonal antibody (MHAA4549A) binds to a highly conserved epitope on the stalk of 180 

influenza A hemagglutinin. In a phase 2 human influenza A virus challenge study, MHAA4549A 181 

significantly reduced the clinical symptoms and viral burden relative to placebo (32). Another 182 

example is VIS410, a monoclonal antibody engineered to target all known influenza A strains. A 183 

phase 2a trial showed that VIS410 had some clinical benefits (33). Current development efforts 184 

in monoclonal and polyclonal antibodies against coronaviruses are mainly targeting MERS-CoV. 185 

In a phase 1 clinical trial, a human polyclonal antibody, SAB-301, which is generated in trans-186 

chromosomic cattle, was found to be safe and well tolerated in healthy participants. (34). 187 

However, therapeutic treatment with human monoclonal antibodies did not protect against the 188 
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severe disease or the loss of lung function induced by MERS-CoV in animal models (20). The 189 

lack of viral sequence homology among different human coronaviruses suggests that current 190 

investigational antibody-based therapeutics will not be effective against novel virus variants. 191 

Nevertheless, immune-based therapies should be not discarded, when considering future 192 

treatments for novel coronaviruses. 193 

 194 

Another potential treatment option could be the use of novel coronavirus sera prepared from 195 

the blood of patients in convalescence (convalescent sera). Passive immunization is well 196 

established for viral infection prophylaxis. Polyclonal antibody products have been licensed that 197 

target cytomegalovirus, hepatitis B virus, and varicella-zoster virus. A meta-analysis of reports 198 

on the 1918 influenza A (H1N1) epidemic concluded that early administration of convalescent 199 

blood products reduced the absolute risk of pneumonia-related death from 37% to 16% (35). 200 

Nevertheless, the appropriate titer of convalescent sera antibody that is required for 201 

therapeutic efficacy against SARS-CoV-2 remains to be determined. Moreover, additional 202 

studies performed with influenza virus have produced controversial results regarding the 203 

clinical benefit of administering high titers of anti-influenza immunoglobulins (36). Finally, it 204 

remains unclear whether a sufficient pool of potential donors is feasible. Work carried out with 205 

MERS-CoV showed that sera from patients recovering from infections did not contain sufficient 206 

antibody titers for therapeutic use (37).  207 

 208 

Another interesting therapeutic alternative that was previously explored with influenza virus is 209 

to target cellular components involved in the host inflammatory response to the infection. For 210 
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example, the activation of the inflammatory response to an infection can induce a cytokine 211 

outburst that results in an acute lung injury. An example of a therapy for this type of infection 212 

has been to target the cellular toll-like receptor 4 (TLR4) with specific antibodies. TLR4 is a 213 

transmembrane protein that belongs to the pattern recognition receptor (PRR) family. The 214 

prototype pathogen-associated molecular pattern (PAMP) that TLR4 recognizes is the gram-215 

negative bacteria, endotoxin, lipopolysaccharide (LPS). TLR4 has been implicated in the 216 

pathology associated with other infections and with tissue damage caused by non-infectious 217 

insults. TLR4 activation leads to the NF-κB intracellular signaling pathway and inflammatory 218 

cytokine production, which activate the innate immune system. Interestingly, TLR4-null mice 219 

were highly resistant to infection by the mouse-adapted influenza A virus (38). Thus, protection 220 

against influenza infections was achieved by targeting TLR4 with small molecule antagonists, 221 

like TAK-242, or with anti-TLR4-specific antibodies (39, 40). Indeed, targeting a cellular protein 222 

would overcome the drawbacks associated with virus or coronavirus genetic heterogeneity. 223 

 224 

The high mortally rates observed in some emerging respiratory diseases induced by viruses like 225 

MERS-CoV, SARS-CoV, and novel influenza A strains (H5N1) has given rise to the hypothesis that 226 

the pro-inflammatory response might be involved in the disease pathogenesis. Consequently, 227 

immunosuppressants (e.g., corticosteroids) might be used as an adjunct for treating severe 228 

forms of the disease. However, the therapeutic use of immunosuppressants is not free of 229 

controversy. To date, no conclusive results have been found for the effects of 230 

immunosuppressants in severe influenza virus infections (12). Furthermore, the use of 231 

corticosteroids to treat influenza virus has been associated with an increased risk of 232 
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superinfection, prolonged viral replication, and an increased risk of death (41). In contrast, 233 

corticosteroid treatment for MERS-CoV infections was not significantly associated with 234 

mortality, although a delay in MERS-CoV RNA clearance was observed (42). Further studies 235 

should be performed to clarify the potential clinical benefit of prescribing immunosuppressants 236 

for coronavirus infections. 237 

 238 

To end this minireview, we will discuss an interesting potential antiviral strategy. The spike 239 

protein of SARS-CoV mediates viral entry into target cells. Intriguingly, the cleavage and 240 

activation of the SARS-CoV spike protein by a host cell protease is essential for infectious viral 241 

entry (43). This host protease could be a type II transmembrane serine protease, TMPRSS2, 242 

which was shown to cleave and activate SARS-CoV spike protein in cell cultures. Therefore, 243 

TMPRSS2 is a potential a target for antiviral interventions. For example, the serine protease 244 

inhibitor, camostat mesylate, inhibits the enzymatic activity of TMPRSS2 (44). Recently, K11777, 245 

a cysteine protease inhibitor, was shown in tissue cultures to inhibit SARS-CoV and MERS-CoV 246 

replication in the sub-nanomolar range (45). Future tissue culture and animal model studies 247 

should be conducted to clarify the potential antiviral activity of targeting TMPRSS2.  248 

 249 

By the end of February 2020, two months after the first cases of SARS-CoV-2 were reported in 250 

China, several hundreds of new infection cases had been registered, mainly in other Asian 251 

regions and Europe. This news has strongly suggested that we are in the thick of a SARS-CoV-2 252 

pandemic. Social alarm and health authorities have called for the development of therapeutic 253 

alternatives for fighting the current, and possibly new, coronavirus epidemics. Animal models 254 
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and clinical studies are urgently needed for evaluating the effectiveness and safety of promising 255 

antiviral compounds that target the virus and/or the immunopathology involved in the host 256 

responses. The identification and characterization of novel compounds and therapeutic 257 

alternatives will be required to better control this probable pandemic outbreak. 258 
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